Informational recoding by adenosine-to-inosine RNA editing diversifies neuronal proteomes by chemically modifying structured mRNAs. However, techniques for analyzing editing activity on substrates in defined neurons in vivo are lacking. Guided by comparative genomics, here we reverse-engineered a fluorescent reporter sensitive to Drosophila melanogaster adenosine deaminase that acts on RNA (dADAR) activity and alterations in dADAR autoregulation. Using this artificial dADAR substrate, we visualized variable patterns of RNA-editing activity in the Drosophila nervous system between individuals. Our results demonstrate the feasibility of structurally mimicking ADAR substrates as a method to regulate protein expression and, potentially, therapeutically repair mutant mRNAs. Our data suggest variable RNA editing as a credible molecular mechanism for mediating individual-to-individual variation in neuronal physiology and behavior.